SURVEYING - II

LAB MANUAL

B. Tech II Year - II Semester

NAME: \qquad

ROLL NO: \qquad

BRANCH: \qquad

DEPARTMENT OF
 CIVIL ENGINEERING

Aurora's Technological \& Research Institute
Parvathapur, Uppal, Hyderabad-98

Evaluation of Laboratory Marks for II Year (Internal Exams)

1. The internal lab examination schedules will be given by the Examination Branch.
2. During a year there will be three lab exams and each exam will be evaluated for 25 marks.
3. Average of three lab exams will be the final internal lab exam marks.
4. First laboratory exam will be conducted on First $1 / 3$ of the total number of experiments, Second Laboratory Exam will be conducted on the Second 1/3 of experiments and the Third Laboratory Exam will be conducted on the last 1/3 of experiments.

The evaluation is as follows
I. Continuous evaluation - 15 marks
II. Internal Laboratory Exam - 10 marks
I. Continuous Evaluation
a) Day to day evaluation - 10 marks

Each experiment / program will be evaluated for 10 marks.
The splitting of marks is as follows
i) Attendance - 2 marks

The student should attend the lab regularly; if he/she is absent he/she will be losing 2 marks.
ii) Experiments / program and observation

The student should complete the program / experiment within the assigned time otherwise he / she will be losing 2 marks.
iii) Experiment result will carry 4 marks.
iv) Record 2 marks

Student must submit the record in the next lab session.
v) Average marks of the Half of the experiments will be considered for day to day evaluation for 10 marks separately for lab examination one and two.
b) Lab knowledge Test (Quiz) 5 marks

- A quiz will be conducted along with the internal lab exam and schedule will be given separately.
- The quiz will be conducted for 20 minutes. The quiz contains 20 questions of type multiple choice. Each question carrying 0.25 marks.
II. Internal laboratory examination
a) Exam

The Splitting of marks as follows
i) Experiments / Program write up
ii) Result and Graphs
b) Viva Voce

- The internal lab examination duration

2 hours

- Every student will be given programs / experiments in the internal lab exam. In case the student wishes to change the programs / experiments 1 mark will be deducted. A time slot of 45 minutes is given for write up of programs / experiments.
- The student is expected to complete the assigned program / experiment within 1 hour and the remaining 15 minutes will be utilized for viva voce examination.

5. There shall be no supplementary exams in case the student fails to attend internal lab and quiz exam as per schedule.

Evaluation of Laboratory Marks (End exams)

1. The external lab examination schedules will be given by the Examination Branch.
2. Duration of External lab examinations

3 Hours
3. Exam will be evaluated for 50 Marks

The Splitting of marks is as follows
I. Experiment write-up / Program with algorithm - 10 marks
II. Experiment Setup / Program execution - 10 marks
III. Result - 10 marks
IV. Viva -Voce

- 20 marks
a) Written Viva
b) Oral Viva
- 10 marks
- 10 marks

Written Viva-Voce Exam will be consisting of 10 questions of short answer type and fill in the blanks. Each question will carry equal marks and allotted time is 15 minutes.

LAB CODE

1. Students should report to the labs concerned as per the timetable.
2. Students who turn up late to the labs will in no case be permitted to perform the experiment scheduled for the day.
3. After completion of the experiment, certification of the staff in-charge concerned in the observation book is necessary.
4. Students should bring a notebook of about 100 pages and should enter the readings/observations/results into the notebook while performing the experiment.
5. The record of observations along with the detailed experimental procedure of the experiment performed in the immediate previous session should be submitted and certified by the staff member in-charge.
6. Not more than three students in a group are permitted to perform the experiment on a set up.
7. The group-wise division made in the beginning should be adhered to, and no mix up of student among different groups will be permitted later.
8. The components required pertaining to the experiment should be collected from Lab- in-charge after duly filling in the requisition form.
9. When the experiment is completed, students should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.
10. Any damage of the equipment or burnout of components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year.
11. Students should be present in the labs for the total scheduled duration.
12. Students are expected to prepare thoroughly to perform the experiment before coming to Laboratory.
13. Procedure sheets/data sheets provided to the students' groups should be maintained neatly and are to be returned after the experiment.
14. DRESS CODE:

Boys - Formal white shirt neatly tucked in, and white trousers, white / black / brown / tan shoes and belt, I-cards worn round neck
Girls - Formal white Salwar Kameez, white / black / brown / tan shoes, Icards worn round neck

PRINCIPLES OF SURVEYING

PRINCIPLES OF SURVEYING

The fundamental principles upon which the surveying is being carried out are - Working from whole to part.

- After deciding the position of any point, its reference must be kept from at least two permanent objects or stations whose position have already been well defined.

The purpose of working from whole to part is

- To localize the errors and
- To control the accumulation of errors.

This is being achieved by establishing a hierarchy of networks of control points (Stations having known position). The less precise networks are established within the higher precise network and thus restrict the errors. To minimise the error limit, highest precise network (primary network) Fig. 1 of control points are established using the most accurate / precise instruments for collection of data and rigorous methods of analysis are employed to find network parameters. This also involves most skilled manpower and costly resources which are rare and cost intensive.

Fig. 1 Network of Control Points

THEODOLITE SURVEYING

THEODOLITE SURVEYING

INTRODUCTION

The Theodolite is one of the most precise surveying instruments and is suitable for measurement of horizontal as well as vertical angles. It has a powerful telescope and so it can be used also for distance sighting. Theodolites are of two types. They are
i) Transit type
ii) Non-Transit type

A transit Theodolite is one in which the line of sight can be reversed by reversing the telescope through 180° in the vertical plane. The non-transit Theodolites are either plain Theodolites or Y-Theodolites in which the telescope can not be transited. Now day's only transit Theodolites are being used.

PARTS OF TRANSIT THEODOLITE

TRIVET

It is a plate having a central circular threaded hole for fixing hole for fixing the Theodolite on tripod stand by a wing nut. It is also called the base plate or lower tribrach.

FOOT SCREW

These are meant for leveling the instrument. There are three foot screws arranged in between trivet and tribrach.

TRI BRACH

It is a triangular plate carrying the three-foot screws at its ends.

LEVELLING HEAD

Trivet, foot screws and tribrach together form leveling head. Levelling the instruments, fixing the tripod, supporting the main instrument assembly are its uses.

SPINDELS (OR) AXES

Two spindles one inner and other outer. Inner one is solid and rigid and outer one is hollow. To outer spindle lower plate is attached. To inner spindle upper plate is attached.

LOWER PLATE

Graduated from 0^{0} to 360° in clockwise direction provided with a lower clamping and tangent screw.

UPPER PLATE

Contains vernier ' A ' and ' B ' provided with upper clamping and upper tangent screw.

Fig. 2 Theodolite and its Parts

1. TELESCOPE
2. TRUNNION AXIS
3. VERNIER FRAME
4. VERTICAL CIRCLE
5. PLATE LEVELS
6. STANDARDS (A-FRAME)
7. UPPER PLATE
8. HORIZONTAL PLATE VERNIER
9. HORIZONTAL CIRCLE
10. LOWER PLATE
11. INNER AXIS
12. OUTER AXIS
13. ALTITUDE LEVEL
14. LEVELLING HEAD
15. LEVELLING SCREW
16. PLUMB BOB
17. ARM OF VERTICAL CIRCLE CLAMP
18. FOOT PLATE
19. TRIPOD HEAD
20. UPPER CLAMP
21. LOWER CLAMP
22. VERTICAL CIRCLE CLAMP
23. TRIPOD

PLATE BUBBLE

It is meant for leveling the instrument at the time of measuring horizontal angles.

STANDARD (OR) A - FRAME

Two frames are provided on upper plate to support the telescope assembly.

TELESCOPE

Fitted in between standards. Perpendicular to the horizontal axes provided with a focusing screw, clamping screw and tangent screw.

VERTICAL CIRCLE

Fixed rigidly with the telescope and moves with it. Each quadrant is graduated from 0° to 90°. Zero is marked at the ends of horizontal diameter.

INDEX BAR (OR) T-FRAME

Provided on the stand in front of the vertical circle. It carries the vernier ' C ' and ' D '. These verniers are used for taking the readings of the vertical circle. The vertical log of Index bar is provided with a clip screw. At the lower end by means of which the altitude bubbles can be brought to the center.

ALTITUDE BUBBLE

Provided on top of index bar. It is to be leveled while taking vertical angle readings.

TRIPOD

The tripod head carries at its upper surface an external screw to which trivet plate of base plate of the leveling head may be screwed.

PLUMB BOB

It is used for centering the Theodolite.

COMPASS

Some Theodolites are provided with a compass, which can be either tubular type (or) trough type.

TERMS USED

CENTERING

Keeping the instrument exactly above the station mark, by means of a plumb bob is known as centering.

TRANSITING

Turning the telescope about the horizontal axis in the vertical plane through 180° is called transiting.

FACE LEFT

If the vertical circle of the Theodolite is on the left of observer at the time of taking readings. It is known as face left and also called as telescope normal (or) bubble up.

FACE RIGHT

If the vertical circle of the Theodolite is on the right of observer at the time of taking readings it is knows as face right. It is also called as telescope inverted (or) bubble down.

CHANGING FACE

Operation of bringing the vertical circle from one side of the observer to the other side is known as changing face. It is done by transiting the telescope and turning it through 180° in the horizontal plane.

SWINGING THE TELESCOPE

It is the process of turning the telescope in horizontal plane. If the telescope is rotated in clockwise direction. It is known as right swing. If the telescope is rotated in anticlockwise direction. It is known as left swing.

LINE OF COLLIMATION

It is the line joining the intersection of cross hairs and optical center of the objects glass and its continuation.

AXIS OF TELESCOPE

Imaginary line passing through the optical center of the objects glass and the optical center of the eyepiece.

AXIS OF BUBBLE TUBE

It is an imaginary line tangential to the longitudinal curve of the bubble tube at its middle.

HORIZONTAL AXIS

It is the axis about which the Theodolite of the telescope rotates in the horizontal plane.

VERTICAL AXIS

It is the axis about which the Theodolite of the telescope rotates in the vertical plane.

TEMPORARY ADJUSTMENTS

The temporary adjustments are to be done at every set up of the instrument. These mainly involves -

1. Centering
2. Leveling
3. Focusing

1. CENTERING THE THEODOLITE OVER THE STATION

(i) Place the tripod over the station and fix the Theodolite using wing out.
(ii) Approximate centering and leveling is done by tripod stand
(iii) Accurate centering is done with the help of shifting head.
2. LEVELLING
(i) Approximate leveling is made with the help of tripod legs
(ii) Accurate leveling is made with the help of foot screws.

3. FOCUSSING

THE EYE PIECE
A piece of white paper is held in front of the object glass and eye piece is moved in (or) out by turning it clockwise (or) anti clockwise until cross wires appear distinct and sharp.

THE OBJECT GLASS

The telescope is directed towards the objects and focusing screw is turned clockwise (or) anticlockwise until the image appears clean and sharp.
SETTING THE VERNIER
The vernier ' A ' is set to zero. Lower clamping screw is fixed and upper clamping is rotated till the Index of vernier shows zero. Upper tangent screw is used for setting the vernier exactly to zero.

PRECAUTIONS

i) Leveling and centering must be done perfectly.
ii) Relation of fundamental lines at Theodolite must be maintained while taking readings.
iii) Ranging rod should not be disturbed for taking preceding angles.
iv) Care should be exercised in taking out the Theodolite from the box and in screwing it to the tripod. A Theodolite fitted on a tripod should never be set up on the floor as it may lead to serious damage. While placing the Theodolite into the box, the leveling head should be shifted to a central position and the foot screws should be evened all around. The clamp should be released during transit so that the different parts can yield without being damaged, in case it strikes some obstruction.
v) Clamps and screws should especially be carefully operated. Unnecessary pressure should not be used in tightening them. If the screws do not turn easily, they should be cleaned with a good solvent such as alcohol or gasoline.
vi) The wing nuts on the tripod must be tight so as to prevent slippage and rotation of the head. The tripod legs should be well spread out to furnish stability to the instrument and to permit placement of the telescope at a convenient height for the observer.
The vertical circle should be cleaned if tarnished in use. However, excessive rubbing should be avoided, otherwise the engraved graduations will get impaired.
vii) The Theodolite should be protected from moisture and dust as far as possible. If it has been exposed to moisture it should be wiped dry before replacing it in the box.

APPLICATIONS

Laying off horizontal angles, locating points on line, prolonging survey lines, establishing grades, determining difference in elevation, setting out curves etc.

EXERCISE 1

(A) MEASUREMENT OF HORIZONTAL ANGLE

Aim:
To determine the horizontal angle by using transit Theodolite

Equipment:

Theodolite, Tripod Stand, Ranging Rods, Plumb Bob and Pegs.

Principle:

The Theodolite is most accurate instrument used for measurement of horizontal and vertical angles. To measure the horizontal angle, the angles obtained are added and is divided with number of angles. Firstly for taking every angle vernier ' A ' is made to zero, if it is provided with ' B ' also make it to zero, otherwise its vernier reading is noted down. The angles are measured by keeping the telescope in normal and inverted positions. Then the readings are taken by swinging the telescope to the right and left, which is called as right swing and left swing.

The average included angle is obtained as
Average included Angle $=$ Sum of included angles of both faces
No. of times

Procedure:

To measure horizontal angles say angle PQR (Fig.3), the following procedure is followed.
i) Set-up the instrument at Q and level it.
ii) Loose the upper clamp and turn the upper plate until the index arrow of the vernier ' A ' nearly coincides with the horizontal circle. Now tight the upper clamp.
iii) Turn the upper slow motion (tangent) screw so as to make the two zeros exactly coincide, so that ' A ' vernier reads zero and ' B ' vernier reads 180°.
iv) Loose the lower clamp and direct the telescope to sight station P. The approximate bisection of the station is done by sighting from over the telescope through a pin and hole arrangement provided over its top. Now tighten the lower clamp.
v) Bisect station ' P ' exactly by using the lower slow motion (tangent screw)
vi) Unclamp the upper clamp and swing the telescope and bisect the station R. Now tighten the upper clamp and bisect R accurately using the upper tangent screw.
vii) Read the verniers, the reading of vernier ' A ' gives the angle PQR directly while the vernier ' B ' obtained by deducting 180°.
viii) While entering the reading the full reading of vernier ' A ', i.e., degree, minutes and seconds and only minutes and seconds of vernier ' B ' are entered, the mean of the two readings gives the angle PQR.
ix) Change the face of the instrument repeat the procedure, thus a second value of the angle $P Q R$ is obtained. The average of these two values is the requirement i.e. to say required angle.

Fig. 3 Measurement of Horizontal Angle

Observations and Calculations:

$\angle P Q R=$

Result:

The required average included angle $P Q R$ that is horizontal is determined by using transit theodolite as $\angle P Q R=$

Comments/Inference:

Write your comments and observations on the result obtained.
(B) MEASUREMENT OF VERTICAL ANGLE

Aim:

To measure the vertical angle subtended by the line of sight of a given rod with reference to the horizontal axis at a selected station.

Equipment:

Transit Theodolite, Tripod Stand, Plumb Bob, Ranging Rod and Pegs.

Principle:

The vertical angle is the angle made by an inclined line of sight with horizontal line of sight. Vertical angles are measured by using telescope clamping and telescope tangent screws.

Procedure:

1) Let $\angle \mathrm{AOB}$ is to be measured (Fig.4):
i) Setup the instrument doing the exact adjustments (centering, leveling and focusing the eyepiece)
ii) The centering is done with reference to altitude bubble.
iii) Keep the instrument in the left position make the vernier ' C ' read zero with the help of vertical circle clamp \& tangent screws.
iv) Bring the altitude bubble to zero when the telescope is horizontal.
v) Direct the telescope to the object and bisect it accurately by means of the vertical circle clamp and tangent screw.
vi) Read both the vernier ' C ' and ' D ' and take the average, which gives the value of vertical angle.
vii) Change the face and repeat the procedure.
viii) The required vertical angle is the average of face left and face right.
2) Let $\angle \mathrm{AOC}$ is to be measured (Fig.4):
i) The instrument is already setup on the station at ' O '.
ii) Direct the telescope to the top of the rod and bisect it accurately by means of the vertical.
iii) Read the both verniers ' C ' and ' D ' and take the average which gives the value of vertical angle ' α '.
iv) Then the telescope is bisected to the bottom of the rod. Then read the both verniers ' C ' and ' D ' readings the average gives the value of vertical angle ' β '.
v) The summation of $\alpha \& \beta$ gives the $\angle A O C$.
vi) The face is changed and same procedure should be repeated then find $\angle A O C$.
vii) The average of this two gives the $\angle A O C$.

Fig. 4 Measurement of Vertical Angle

Observations and Calculations:

$\alpha=\quad \beta=$
Horizontal Distance, D =
Vertical Height $=\mathrm{D}(\operatorname{Tan} \alpha+\operatorname{Tan} \beta)$

Result:

The vertical angle to the given ranging rod is measured as $\angle \mathrm{AOC}=$ Height of the given object =

Comments/Inference:

Write your comments and observations on the result obtained.

EXERCISE 2

(A) MEASUREMENT OF HORIZONTAL ANGLE (BY REPETITION METHOD)

Aim:
To determine a horizontal angle by the method of repetition.

Equipment:

Transit Theodolite, Tripod, Plumb Bob, Ranging Rods and Pegs.

Principle:

In the method of repetition, the angle is measured and added to itself several times and divided by the number of times it is added. It is then possible to obtain the value of angle to a greater degree of accuracy than the least count of the vernier. The error due to imperfect graduations is also minimized.

Procedure:

The method of repetition is used to measure a horizontal angle to a finer degree of accuracy than that obtainable with the least count of the vernier. By this method an angle is measured two (or) more times by allowing the vernier to remain clamped each time at the end of each measurement instead of setting it back at zero when sighting at the previous station. Thus an angle reading is mechanically added several times depending upon the number of repetitions. The average horizontal angle is then obtained by dividing the final reading by number of repetitions. Generally six repetitions are done three with the telescope normal and three with the telescope inverted.

To measure the horizontal angle, say angle PQR (Fig.5) the following procedure is followed.
i) Setup the instrument at 'Q' and level it.
ii) Loosen the upper clamp and turn the upper plate until the index of vernier 'A' nearly coincide with the horizontal circle. Now tight the upper clamp.
iii) Turn the upper tangent screw so as to make the two zeros exactly coincide. So that ' A ' vernier reads 0° and ' B ' vernier reads 180°.
iv) Sight station ' P ', tighten the lower clamp and bisect station ' P ' exactly by using the lower tangent screw.
v) Unclamp the upper clamp and swing the telescope, bisect station ' R ' by using the upper clamp and upper tangent screw.
vi) Read both the verniers take average to get $\angle P Q R$.
vii) Unclamp the lower clamp and swing the telescope and bisect station ' P ' accurately by using the lower clamp and lower tangent screw.
viii) Read both the verniers check the vernier reading it should be the same (unchanged) as that obtained in step 6.
ix) Release the upper plate by using upper clamp and bisect station ' R ' accurately by using upper tangent screw. The vernier will read twice the $\angle P Q R$
x) Repeat the procedure for required number of times say three times and find out the value of $\angle P Q R$.
xi) Change face and make three more repetitions as described above. Find the average angle with face right by dividing the final reading by three or what ever the number of repetitions.
xii) The average Horizontal angle is then obtained by taking the average of the two angles obtained with face left and face right.

Fig. 5 Measurement of Horizontal Angle (Repetition Method)

Observations and Calculations:

Observations are entered in the field book and the angles are calculated.

Result:

The angle is measured by the method of repetition and the obtained Horizontal angle is $\angle P Q R=$

Comments/Inference:

Write your comments and observations on the result obtained.

(B) MEASUREMENT OF INCLUDED ANGLES BETWEEN VARIOUS POINTS (REITERATION METHOD)

Aim:

To measure included angles between various points around the instrument station.

Equipment:

Vernier Transit Theodolite, Tripod Stand, Plumb Bob, Ranging Rods and Pegs.

Principle:

Several angles at a station are measured one after the other and finally the origin is closed by sighting the first station. If there is any error in the first and final readings taken on the initial station, the error is distributed equally among all the measured angles.

Procedure:

It is most commonly used in triangulation survey. The method in measuring a horizontal angle is preferred when several angular measurements are to be made at a station all the angles are measured successively and finally the origin is closed. The final reading and vernier ' A ' should be same as the initial zero. If not the discrepancy is equally distributed among all the angles.

To measure the angles AOB, BOC, COD, DOA etc. (Fig.6), by method of reiteration the following procedure is adopted.

Step (1): Set up instrument at ' 0 ' and level it.
Step (2): Set the vernier 'A' to read zero using upper clamp and upper tangent screw.
Step (3): Direct the telescope towards point ' B ' and bisect it exactly using the lower clamp and lower tangent screw.
Step (4): Loosen the upper clamp and bisect point ' C ' accurately using upper tangent screw. Read the both vernier ' A ' \mathcal{G} ' ' B and take mean value.
Step (5): Similarly bisect D etc, and Finally ' B ' and read both the verniers in all the cases. The last reading and vernier ' A ' should be 360°. If not the discrepancy is noted and distributed.
Step (6): Repeat the procedure by changing the face.

Fig. 6 Measurement of Horizontal Angle (Reiteration Method)

Observations and Calculations:

Observations are noted down in the field book and angles are calculated.

Total included angle =
Error $=$

Result:

The various angles at station ' 0 ' are measured by reiteration are $=$

Comments/Inference:

Write your comments and observations on the result obtained.

EXERCISE 3

HEIGHTS AND DISTANCES (TRIGONOMETRIC LEVELLING)

(A) BASE ACCESSIBLE

Aim:
To find the elevation of the top of a spire / tower / building using the principle of trigonometric leveling.

Equipment:

Transit Vernier Theodolite, Tripod stand, Plumb bob, Tape, Leveling Staff and Pegs.

Procedure:

It is required to find the elevation (R.L.) of the top of a tower ' Q ' from the instrument station ' P ' as shown in Fig.7.

Fig. 7 Base Accessible

Let,

$\mathrm{P}=$ instrument station
$\mathrm{Q}=$ Point to be observed
$A=$ center of the instrument
$\mathrm{D}=$ horizontal distance between P and Q
$h^{\prime}=$ height of the instrument at P
Q'=Projection of Q on horizontal plane
$S=$ Reading on staff kept on B.M, with line of sight on horizontal
$\alpha=$ Angle of elevation from A to Q

1. Setup the Theodolite at P and level if accurately w.r.t. the altitude bubble. See that the vertical circle reads $0^{\circ} 0^{\prime} 0^{\prime \prime}$ when the line of sight is horizontal.
2. Direct the telescope towards Q and bisect it accurately clamp both the plates. Read the vertical angle ' α '.
3. Plunge the telescope and sight to the same point ' Q ' and take the vertical angle ' α ' calculate the avg. of the vertical angles measured in both faces.
4. With the vertical vernier set to zero reading and the altitude bubble in the center of its run take the reading on the leveling staff kept at A.B.M. Let it be ' S '.

Observations and Calculations:

Vertical Angle, $\alpha=$ Staff Reading, $\mathrm{S}(\mathrm{m})=$ Horizontal
Distance, $\mathrm{D}(\mathrm{m})=$
From Triangle AQQ': $\mathrm{h}=\mathrm{D} \tan \alpha$
R.L. of $Q(m)=R . L$ of $B . M+S+h$ where $h=D \tan \alpha$ (Or)
R.L. of $Q(m)=$ R.L of instrument axis $+D \tan \alpha$
(Or)
R.L. of $Q(m)=R . L$ of $P+h^{\prime}+D \tan \alpha$, if $R . L$ of P is Known

Result:

R.L. of $Q(m)=R . L$ of $B . M+S+h$ where $h=D \tan \alpha$

Comments/Inference:

Write your comments and observations on the result obtained.

(B) BASE INACCESSIBLE (SINGLE PLANE METHOD)

Aim:

To find the elevation of the top of a building using the principle of trigonometrical leveling with the instrument stations having their vertical axes in the same plane as the object.

Equipment:
Transit Vernier Theodolite, Tripod Stand, Plumb Bob, Tape, Leveling Staff and Pegs.

Procedure:

It is required to find the elevation (R.L.) of the top of a building ' Q ' from the instrument stations $P \& R$ as shown in Fig.8.

Fig. 8 (a) Instrument Axis at Same Levels
h = QQ'
$b=$ Horizontal dist. $b / w P \& R$
D = Horizontal dist. b/w P \& Q
$\alpha_{1}=$ angle of elevation from A to Q
$\alpha_{2}=$ angle of elevation from B to Q

Fig. 8 (b) Instrument Axes at Different Levels

1. Setup the Theodolite at P and level it accurately with respect to the altitude bubble. See that the vertical circle reads $0^{\circ} 0^{\prime} 0^{\prime \prime}$ when the line of sight is horizontal.
2. Direct the telescope towards Q and bisect it accurately clamp both the plates. Read the vertical angle α_{1}.
3. Transit the telescope so that the line of sight is reversed. Mark the instrument station R on the ground along the line of sight. Measure the dist. b/w P\&R accurately. Let it be 'b' repeat the steps (2) \& (3) for both face observations. The mean values should be adopted in the calculations.
4. With the vertical vernier set to zero reading and the altitude bubble in the center of its run take the reading on the leveling staff kept at A.B.M. Let it be ' S ' if both the instrument axis are at same level and ' S_{1} ' if they are at different levels.
5. Shift the instrument to R and set up the Theodolite there. Measure the vertical angle ' α_{2} ' to Q with both face observations.
6. In case of instrument axis at different levels repeat the step (4) and let the reading at R be ' S_{2} '.

Observations and Calculations:

Vertical Angles,	$\alpha_{1}=$		
$\alpha_{2}=$		\quad Staff Readings \quad	$S_{1}(m)=$
:---			
$S_{2}(m)=$	\quad (or) $S(m)=$		

Horizontal dist. b / w P \& R = b =
In case of instrument axis at same level:
From triangle AQQ'
$\mathrm{h}=\mathrm{D} \tan \alpha_{1}$
From triangle BQQ'
$\mathrm{h}=(\mathrm{b}+\mathrm{D}) \tan \alpha_{2}$
$D=b \tan \alpha_{2}$. $\tan \alpha_{1}-\tan \alpha_{2}$
R.L. of $Q(m)=$ R.L. of B.M. $+S+h$

In case of instrument axis at different levels:
$h_{1}-h_{2}=S_{2} \sim S_{1}=S$
$D=\frac{S+b \tan \alpha_{2}}{\tan \alpha_{1}-\tan \alpha_{2}}$
$\mathrm{h}_{1}=\mathrm{D} \tan \alpha_{1}$
$h_{2}=(b+D) \tan \alpha_{2}$
R.L. of $Q=$ R.L. of B.M. $+S_{1}+h_{1}$
R.L. of $Q=R L$ of B.M. $+S_{2}+h_{2}$

Result:

R.L. of given point $\mathrm{Q}(\mathrm{m})=$

Comments/Inference:

Write your comments and observations on the result obtained.

(C) BASE INACCESSIBLE (DOUBLE PLANE METHOD)

Aim:

To find the R.L. of the top of an object, when the base of the object is inaccessible and the instrument stations are not in the same vertical plane as the elevated object, adopt trigonometrical leveling (double plane method).

Equipment:

Transit Vernier Theodolite, Tripod Stand, Plumb Bob, Tape, Leveling Staff and Pegs

Procedure:

Let P\&R be the two instruments stations which are not in the same vertical plane as that of the elevated object ' Q ' as shown in Fig. 9 P\&R are should be selected such that the $\Delta^{\mathrm{le}} \mathrm{PQR}$ is a well conditioned triangle.

Fig. 9 Base Inaccessible (Double Plane Method)
It is required to find out the elevation of the top of an object ' Q '

1. Setup the instruments at P and level it accurately w.r.t. the altitude bubble. Bisect the point Q and measure the angle of elevation ' α_{1} '.
2. Sight to point R with reading on horizontal circle as zero and measure the horizontal angle $\mathrm{RPQ}_{1}\left(\theta_{1}\right)$ from P.
3. Take a back sight ' S ' on the staff kept at A.B.M.
4. Shift the instrument to R and measure ' α_{2} 'and ' θ_{2} ' from R.
5. Measure the distance b / w two instrument stations $R \& P$ (equals to ' b ')

Let
$\mathrm{Q}_{1}=$ projection of Q on the horizontal line thought A , $\mathrm{Q}_{2}=$ projection of Q on the horizontal line thought B , $A Q_{1}=$ horizontal line though A,
$B Q_{2}=$ horizontal line though B,
AQQ1 is the vertical plane simultaneously, BQQ_{2} is the vertical plane simultaneously,
PRQ3 is a horizontal plane
$\theta_{1}=$ Horizontal angle measured at P, $\theta \mathbf{2}=$ Horizontal angle measured at R , $\alpha_{1}=$ Vertical angle measured at A,
$\alpha_{2}=$ Vertical angle measured at B .
From $\Delta^{\mathrm{le}} A Q Q$ ', $\mathrm{h}_{1}=\mathrm{D} \tan \alpha_{1}$
From $\Delta^{\text {le }} \mathrm{PRQ}_{1}$, angle $P Q_{1} R=\theta_{3}=180^{\circ}-\left(\theta_{1}+\theta_{2}\right)$
By applying sine rule
$\left(\mathrm{PQ}_{1} / \sin \theta_{2}\right)=\left(\mathrm{RQ}_{1} / \operatorname{Sing} \theta_{1}\right)=\left(\mathrm{RP} / \sin \theta_{3}\right)$
$P Q_{1}=\mathrm{D}=\mathrm{b} \sin \theta_{2} /\left\{\sin \left(\theta_{1}+\theta_{2}\right)\right\}$
And $\mathrm{RQ}_{1}=\mathrm{b} \sin \theta_{1} /\left\{\sin \left(\theta_{1}+\theta_{2}\right)\right\}$

Observations and Calculations:

Vertical Angles,	$\alpha_{1}=$	Staff Readings	$S_{1}(m)=$
Angles,	$\theta_{1}=$		Horizontal
	$\alpha_{2}=$	$S_{2}(m)=$	
	$\theta_{2}=$		

$\mathrm{h}_{1}=\mathrm{D} \tan \alpha_{1}$ or $\mathrm{h}_{2}=\mathrm{RQ}_{1} \tan \alpha$
R.L. of $Q(m)=$ RL. Of A.B.M. $+S_{1}+h_{1}$
(Or)
R.L. of $Q(m)=$ R.L. of A.B.M. $+S_{2}($ from $B)+h_{2}=$

Result:

R.L. of given station $Q(m)=$

Comments/Inference:

Write your comments and observations on the result obtained.

EXERCISE 4

CURVE SETTING - DIFFERENT METHODS

(A) SETTING OUT A SIMPLE CURVE BY MEANS OF OFFSETS FROM LONG CHORD

Aim:

To setout the simple curve of given radius and length of long chord by means of offsets from the long chord.

Equipment:

Theodolite, Tripod Stand, Cross-Staff, Ranging Rods, Pegs, Chain and Tape.

Principle:

Setting out a curve by method of offsets from long chord is linear method. It involves setting out the normal offsets of the long chord at specified intervals and joining them.

The length of offsets at any distance ' x ' from the mid points of the long chord is given by

$$
O_{x}=\sqrt{R^{2}-x^{2}}-\sqrt{R^{2}-\left(\frac{L}{2}\right)^{2}}
$$

Where $0 x=$ length of offset at a distance ' x ' from the mid of long chord.
$X=$ specified distance between offsets.
$\mathrm{L} \quad=\quad$ length of the long chord.
R $\quad=\quad$ Radius of the curve

$$
\left.O_{o}=R-\sqrt{R^{2}-\left(\frac{L}{2}\right)^{2}} \text { (Mid Ordinate }\right)
$$

Usually, the offsets from the mid of long chord towards the end are setout and the curve is symmetric over the central offset line.

Procedure:

1. The obtained length of long chord is first setout on the field by proper ranging and mid point is established (Fig.10)
2. The length of offsets at mid length is to be setout. For this, a person holds the cross-staff at required point and aligns the slit with the end station ranging rods. At this instant another person looks through the normal slit and guides a person with a ranging rod to come into its view thus along this line normal to long chord, the calculated offset is setout.
3. The cross staff is shifted to next point distance ' x ' as specified and above step is repeated the offset corresponding to that distance is set out from that point.
4. Pegs are marked at the end of the offsets, the joining of which completes the setting.

Observations and Calculations:

Distance (X m) = Ordinate (Y m) =

Fig. 10 (a) Setting Out By Ordinates from the Long Chord

Fig. 10 (b) Setting Out By Perpendicular Offsets

Result:

The simple curve is setout by the method of offsets from long chord in the field.

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

Curves are used on highways and railways where it is necessary to change the direction of motion.

(B) SETTING OUT A SIMPLE CURVE BY RANKINE'S METHOD

Aim:

Two tangents intersect at a given chainage $\mathbb{\&}$ with the given deflection angle. Calculate all the data necessary for setting out a curve with a given radius by Rankine's method or Deflection Angle Method or One Theodolite Method. The peg interval is 30 m .

Equipment:

Transit Theodolite, Tripod Stand, Tape \& Chain, Ranging Rods, and Pegs.

Principle:

A substance of this method of setting out a simple curve is the location of various points on the curve from their total deflection angles.

Total deflection of a point is the angle made by a chord joining that point to the point of curvature with the rare tangent. It is indicated by ' Δ '.

A deflection angle of a chord is the angle made by the chord with the tangent drawn at the straight starting point of the chord. It is denoted by ' δ '. ' δ ' for given chord lengths are determined by $\delta=\frac{1718.9}{R} C$

Where $\mathrm{C}=$ Length of chord, $\quad \mathrm{R}=$ Radius of curve

Fig. 11 Setting Out By Rankine's Method

Procedure:

1. Locate points T_{1}, T_{2} and V (Fig.11).
2. Setup the Theodolite exactly at point T_{1} and make its temporary adjustments.
3. Set the ' A ' - vernier to zero degrees and bisect the point V , clamp the lower plate.
4. Release the upper plate and set the ' A '-vernier to read Δ_{1} the line of sight is thus directed along $\mathrm{T}_{1} \mathrm{~A}$.
5. Hold the zero of the tape at $T_{1} \&$ take a distance $C_{1}\left(T_{1} A\right)$ and swing the tape with an arrow till it is bisected by the Theodolite. This establishes the first point A on the curve.
6. Set the second deflection angle Δ_{2} on the vernier so that the line of sight is set along $T_{1} B$.
7. Hold the zero of the tape at point A and an arrow at the other end (AB), swing the tape about point A till the arrow is bisected at point B. This establishes the second point B on the curve.
8. The same steps are repeated till the last point T_{2} is reached.

Observations and Calculations:

$\delta=\frac{1718.9}{R} C=$ deflection angle, $\delta_{1}, \delta_{2}, \delta_{3} \ldots$ etc., are the successive deflection angles

Where $C=$ Length of chord, $C_{1}, C 2$,..etc., are the successive chord lengths
$\mathrm{R}=$ Radius of curve
Let $A B C D$..... be the points on the curve the total deflection angles of which are $\Delta_{1} \Delta_{2} \Delta_{3} \ldots$ then

$$
\begin{aligned}
& \Delta_{1}=\delta_{1} \\
& \Delta_{2}=\Delta_{1}+\delta_{2}
\end{aligned}
$$

And $\Delta_{n}=\Delta_{n-1}+\delta_{n}$
Length of Long Chord $L=2 R \operatorname{SIN} \Delta / 2$
Tangent length $\left(\mathrm{T}_{1} \mathrm{~V}\right)=\mathrm{R} \operatorname{Tan} \Delta / 2$
Length of Curve $=\mathrm{R} \Delta(\Pi / 180)$
Chainage of point $T_{1}=$ Chainage of $V-T_{1} V$
Chainage of point $T_{2}=$ Chainage of $T_{1}+$ Length of Curve

Result:

The required simple circular curve is set out in the field by Rankine's Method.

Comments/Inference:

Write your comments and observations on the result obtained.

(C) SETTING OUT A SIMPLE CURVE BY TWO-THEODOLITE METHOD

Aim:
Two tangents intersect at a given chainage with a given deflection angle. Calculate all the necessary data for setting out a curve with a given radius by two Theodolite method. The peg interval is 30 m .

Equipment:

Two Transit Theodolites, Tripod Stands, Ranging Rods and Pegs.

Principle:

In this method two Theodolites are used one at T_{1} (P.C) and the other at T_{2} (P.T). The method is used when the ground is unsuitable for chaining and is based on the principle that the angle between the tangent and the chord is equal to the angle which that chord subtends in the opposite segment.

Thus, $\angle V T_{1} A=\Delta_{1}=$ deflection angle for ' A ' but $\angle A T_{2} T_{1}$ is the angle subtended by the chord $T_{1} A$ in the opposite segment. $\angle A T_{2} T_{1}=\angle V T_{1} A=\Delta_{1}$

Similarly

$$
\begin{aligned}
& \angle V T_{1} B=\Delta_{2}=\angle T_{1} T_{2} B \\
& \angle V T_{1} C=\Delta_{3}=\angle T_{1} T_{2} C \\
& \cdots--\cdots--\cdots--\cdots--\cdots \\
& \angle V T_{1} T_{2}=\Delta_{n}=\angle T_{1} T_{2} V
\end{aligned}
$$

Procedure:

1. Set up one transit at P.C. (T_{1}) and the other at P.T. (T_{2}) (Fig.12).
2. Clamp the both plates of each transit to zero reading.
3. With the zero reading, direct the line of sight of the transit T_{1} towards V . Similarly, direct the line of sight of the other transit at T_{2} towards T_{1} when the reading is zero. Both the transits are thus correctly oriented.
4. Set the reading of each of the transits to the deflection angle for the first point ' A '. The line of sight of both the Theodolites are thus directed towards ' A ' along $T_{1} A$ and $T_{2} A$ respectively.
5. Move the ranging rod or arrow in such a way that it is bisected simultaneously by cross hairs of the both instruments. Thus point A is selected.
6. To fix the second point ' B '. Set reading Δ_{2} on both instruments $\&$ bisect the ranging rod.
7. Repeat the steps (4) \& (5) for calculation of all the points.

Fig. 12 Setting Out By Two-Theodolite Method

Result:

The required simple circular curve is setout in the field by two-theodolite method.

Comments/Inference:

Write your comments and observations on the result obtained.

TACHEOMETRIC SURVEY

TACHEOMETRIC SURVEY

INTRODUCTION
Tacheometer in general sense, is a transit Theodolite fitted with anallactic lens (Fig.13) and a stadia diaphragm (Fig.14) consisting of one stadia hair above and the other at equal distance below the horizontal cross hair (Fig.15).

The stadia hairs are kept in the same vertical plane as the other cross hairs.

Fig. 13 Tacheometer

TYPES OF STADIA DIAPHRAGM

Fig. 14 Stadia Diaphragms

STADIA RODS

1. For the short distances ordinary leveling staffs may be used
2. For greater distance the stadia rods of 3 to 4 meters in length are generally used

STADIA READINGS

TYPES OF TELESCOPES USED IN STADIA SURVEYING

* The simple external-focusing telescope.
* The external-focusing anallactic telescope.
* The internal telescope

CHARACTERISTICS OF TACHEOMETER

* The value of the constant f / i should be 100.
* The telescope should be fitted with an anallactic lens.
* The axial horizontal line should be at center of the other two horizontal line
* The telescope should be powerful, the magnification being 20 to 30 diameter.
* The aperture of the objective should be 35 to 45 mm in diameter.
* The magnifying power of the eyepiece should be greater to render staff graduations clearer at long distance.

PRECAUTIONS

i) Leveling and centering must be done perfectly.
ii) Relation of fundamental lines at Theodolite must be maintained while taking readings.
iii) Ranging rod should not be disturbed for taking preceding angles.
iv) Care should be exercised in taking out the Theodolite from the box and in screwing it to the tripod. A Theodolite fitted on a tripod should never be set up on the floor as it may lead to serious damage. While placing the Theodolite into the box, the leveling head should be shifted to a central position and the foot screws should be evened all around. The clamp should be released during transit so that the different parts can yield without being damaged, in case it strikes some obstruction.
v) Clamps and screws should especially be carefully operated. Unnecessary pressure should not be used in tightening them. If the screws do not turn easily, they should be cleaned with a good solvent such as alcohol or gasoline.
vi) The wing nuts on the tripod must be tight so as to prevent slippage and rotation of the head. The tripod legs should be well spread out to furnish stability to the instrument and to permit placement of the telescope at a convenient height for the observer.
vii) The vertical circle should be cleaned if tarnished in use. However, excessive rubbing should be avoided, otherwise the engraved graduations will get impaired.
viii) The Theodolite should be protected from moisture and dust as far as possible. If it has been exposed to moisture it should be wiped dry before replacing it in the box.

APPLICATIONS

* Tacheometer prime object is to prepare contour maps (or) plans requiring both the horizontal as well as vertical control.

EXERCISE 5

HEIGHTS AND DISTANCES USING PRINCIPLES OF TACHEOMETRIC SURVEYING

TACHEOMETRIC CONSTANTS

Aim:

To determine the Tacheometric constants using Tacheometer.

Equipment:

Tacheometer, Chain (or) Tape, Pegs and Levelling Staff.

Principle:

Distance between two points is given by (Fig. 16)
$D=\frac{f}{i} \times s+(f+d)$
Where f / i is called the multiplying constant.
$(\mathrm{f}+\mathrm{d})$ is called additive constant.

Fig. 16 Tacheometric Constants

Procedure:

Setup the instrument at one end of a straight line say 50 m

* Drive pegs at $10 \mathrm{~m}, 20 \mathrm{~m}, 25 \mathrm{~m}$ and at 50 m lengths...
* Keep the staff on the pegs and observe the corresponding staff intercepts with horizontal sight.
* Knowing the values of ' S ' and corresponding ' D ' values for different peg intervals a number of similar equations can be formed by substituting the values of ' S ' and ' D ' in equation

$$
D=K S+C
$$

* The simultaneous equations are taken two at a time to find the values of ' K ' and ' C '.
* The average values of ' K ' and ' C ' are found.

Observations and Calculations:

Horizontal Distance, D (m) =
Staff Intercept, S (m) =
$D=K S+C$

Result:

For the given instrument
$\mathrm{f} / \mathrm{i}=$ multiplying constant $(\mathrm{K})=$
$\mathrm{f}+\mathrm{d}=$ Additive constant (C) =

Comments/Inference:

Write your comments and observations on the result obtained.
(A) DISTANCE BETWEEN ACCESSIBLE POINTS BY STADIA METHOD

Aim:

To measure the horizontal distance between two accessible points

Equipment:

Tacheometer, Tripod Stand, Tape, Plumb Bob, Pegs and Ranging Rods.

Principle:

1) Staff held Vertical:
a) Angle of elevation

Fig. 17 Angle of Elevation
From right angle triangle OFC (Fig.17)
$\angle O C F=90-\theta$
$\angle B C B^{\prime}=\theta$
$\angle A^{\prime} C B=\angle B C B^{\prime}=\theta$
Let ' α ' be the angle
$\angle C O A^{\prime}=\alpha / 2$
$\angle C A^{\prime} O=90-(\alpha / 2)$
$\angle C A^{\prime} A=180-(90-\alpha / 2)=90+\alpha / 2$
$A^{\prime} B^{\prime}=A^{\prime} C+B^{\prime} C$
$=A C C O S \theta+B C \operatorname{COS} \theta$
$=(A C+B C) \operatorname{COS} \theta$
$=S \operatorname{COS} \theta$
Inclined distance $L=K S C O S ~ \theta+C=K\left(A^{\prime} B^{\prime}\right)+C$
Horizontal distance $\mathrm{D}=\mathrm{KS} \operatorname{COS}^{2} \theta+\mathrm{C} \operatorname{COS} \theta$
$V=L \operatorname{SIN} \theta=F C$
$=(\mathrm{KS} \operatorname{COS} \theta \operatorname{SIN} \theta)+C \operatorname{SIN} \theta$
$V=1 / 2 \mathrm{KS}$ SIN $2 \theta+\mathrm{C}$ SIN θ
b) Angle of depression

Fig. 18 Angle of Depression
From Fig. 18,
Inclined distance $\mathrm{L}=\mathrm{KS} \operatorname{COS} \theta+\mathrm{C}$
Horizontal distance $D=K S \cos ^{2} \theta+C \cos \theta$
$V=L \operatorname{SIN} \theta$
$=(\mathrm{KS} \operatorname{COS} \theta \operatorname{SIN} \theta)+C \operatorname{SIN} \theta$
$V=1 / 2 K S \operatorname{SIN} 2 \theta+C \operatorname{SIN} \theta$
2) Staff held Normal:
a) Angle of elevation

Fig. 19 Angle of Elevation
From Fig.19,
L $=\mathrm{KS}+\mathrm{C}$
D = OF' + FF'
$=L \cos \theta+H \cos \theta$
$D=(K S+C) \operatorname{COS} \theta+H \operatorname{SIN} \theta$
$V=L \operatorname{SIN} \theta$
$V=(K S+C) \operatorname{SIN} \theta$
b) Angle of depression

Fig. 20 Angle of Depression
From Fig.20,
$\mathrm{L}=\mathrm{KS}+\mathrm{C}$
D = OF' - FF'

$$
=\mathrm{L} \cos \theta-\mathrm{H} \cos \theta
$$

$D=(K S+C) \operatorname{COS} \theta$ H SIN θ
$V=L \operatorname{SIN} \theta$
$V=(K S+C) \operatorname{SIN} \theta$

Procedure:

1. Fix the two stations ' P ' and ' Q ', those are unknown distance.
2. Set the Theodolite over station ' O ' \& do the temporary adjustments and keep the instrument in face left position.
3. Set the vernier reading ' P ' reading $0^{0} 0^{\prime} 0^{\prime}$ ' by using upper clamp screw and upper tangential screw.
4. Release the lower clamp, sight ' P ' and clamp the lower clamp screw. Use the lower tangential screw for exact bisection.
5. Release the upper clamping screw and rotate clockwise direction to sight ' Q '. Use the upper clamp and upper tangent screw for exact bisection.
6. Note the readings of vernier ' P ' and ' Q '. The average of vernier ' P ' and ' Q ' gives the angle ' θ ' on face left (Fig.21).
7. Repeat the same procedure on face right, the average of face left and face right gives the angle POQ and measured distances OP and OQ.

Fig. 21 Measurement of Vertical Angle

Observations and Calculations:

$\mathrm{D}=\mathrm{KS} \operatorname{Cos}^{2} \theta+\mathrm{C} \operatorname{Cos} \theta$

$$
P Q^{2}=O P^{2}+O Q^{2}-2 \overline{O P} \overline{\mathrm{OQ}} \operatorname{COS} \theta
$$

Result:

The horizontal distance between accessible points "PQ' is =

Comments/Inference:

Write your comments and observations on the result obtained.

(B) DISTANCE BETWEEN TWO ACCESSIABLE POINTS BY TANGENTIAL TACHEOMETRY METHOD

Aim:

To determine the horizontal distance between two accessible points by tangential Tacheometer.

Equipment:

Tacheometer, Tripod Stand, Tape, Plumb Bob, Pegs and Ranging Rods.

Principle:

i) Both angles are angles of elevation:

Let
' P ' position of the instrument
' M ' Position of instrument axis
'Q' Staff station
A, B are position of vanes
' S ' is the distance between the vanes (i.e. staff intercept)
' α_{1} ' is the angle of elevation corresponding to ' A '
' α_{2} ' is the angle of elevation corresponding to ' B '.
D Horizontal distance $\mathrm{b} / \mathrm{n} \mathrm{P}$ and $\mathrm{Q}=\mathrm{MQ}^{1}$.
V Vertical intercept between the lower vane and the horizontal line of sight.
$\mathrm{H} \quad$ height of the instrument $=\mathrm{MP}$
$R \quad$ is the height of the lower vane above the foot of the staff which is equal to staff reading at lower vane $=B Q$

Observations and Calculations:

Instrument at	Staff station	Horizontal angle	Vertical angle	Staff readings	Horizontal distance (m)
O	P				

Fig. 22 Both Angles are Angles of Elevation
From Triangle MBQ' (Fig.22),
$\mathrm{V}=\mathrm{D} \operatorname{Tan} \alpha_{2}$
Llary Triangle AMQ’
V + S = D Tan α_{1}
D = S / (Tan $\left.\alpha_{1}-\operatorname{Tan}_{2}\right)$
$\mathrm{V}=\mathrm{S} \operatorname{Tan} \alpha_{2} /\left(\operatorname{Tan} \alpha_{1}-\operatorname{Tan} \alpha_{2}\right)$
ii) Both angles are angles of depression:

Fig. 23 Both Angles are Angles of Depression
From Triangle MBQ' (Fig.23),
V= D Tan α_{2}
Llary Triangle AMQ’
V - S = D Tan α_{1}
$\mathrm{D}=\mathrm{S} /\left(\operatorname{Tan} \alpha_{2}-\operatorname{Tan} \alpha_{1}\right)$
$\mathrm{V}=\mathrm{S} \operatorname{Tan} \alpha_{2} /\left(\operatorname{Tan} \alpha_{2}-\operatorname{Tan} \alpha_{1}\right)$
iii) One angle of elevation and the other of depression:

Fig. 24 One Angle of Elevation and the Other of Depression:
From Triangle MBQ' (Fig.24),
$\mathrm{V}=\mathrm{D} \operatorname{Tan} \alpha_{2}$
Δ Triangle AMQ’
S - V = D Tan α_{1}
$\mathrm{D}=\mathrm{S} /\left(\operatorname{Tan} \alpha_{2}+\operatorname{Tan} \alpha_{1}\right)$
$\mathrm{V}=\mathrm{S} \operatorname{Tan} \alpha_{2} /\left(\operatorname{Tan} \alpha_{2}+\operatorname{Tan} \alpha_{1}\right)$

Procedure:

i. Set up instrument at ' P ' and do the temporary adjustments.
ii. Set the vernier ' A ' to zero and vertical angle circle read to zero by using telescope clamping screw and tangent screw.
iii. Turn the telescope in vertical plane and bisect the point ' A ' at a station ' Q '. The staffs intercept reading and corresponding reading on vertical circle is to be noted down.
iv. Thus, turn the telescope and bisect the staff at a point ' B ' of station held at ' Q ' of 1 m reading \& corresponding reading on vertical circle is to be noted down.
v. The horizontal distance between' ' P ' and ' Q ' points is to be calculated by using the formula.

$$
D=\frac{S}{\tan \alpha_{1} \pm \tan \alpha_{2}}
$$

Where ' S ' is the difference between two intercepts.

Result:

The horizontal distance between two accessible points is measured to be:

Comments/Inference:

Write your comments and observations on the result obtained.

SETTING OUT WORKS

SETTING OUT WORKS

INTRODUCTION

Setting out is a survey undertaken in order to transfer onto the site the plans prepared as a result of some previous survey. Setting out, in a sense, is the reverse of the conventional surveying. Here, instead of using data from the site to prepare plans, the plans and designs prepared by the designer are transferred accurately onto the actual site. It may be described as the fixing of well-defined points in the field showing the horizontal and vertical positions required by the plans.

To build according to the plan, a contractor must have reference lines and points established in the field. This involves placing of pegs or marks to define the lines and levels of work where after, the construction proceeds according to these marks. Some factors to be considered during setting out works are:

1. The reference lines and points should be well defined, not easily perishable, close to the work yet out of the way or actual construction operations.
2. A very high degree of accuracy should be maintained and only extremely low tolerances should be allowed. In order to achieve this, frequent and independent checking should be done.
3. The instruments used should be checked frequently and discrepancies, if any, should be removed.

In most of the setting out works, the principle is very simple, but in practice, difficulties like skew plans, obstructions, etc. are encountered which often necessitate the use of indirect methods. The use of surveying methods provides the tool for layout or setting out works as well as the control which makes the proper layout possible.

The contemporary construction scenario encompasses a wide variety of structures. As such, it will be impossible to cover every conceivable setting out problem in this book. Instead, a few more common and important ones are discussed herein.

DEFINITIONS

Some terms which are used frequently in setting out works are defined below.
Stake:The term stake refers to any type of keel, which is driven into the ground so as to act as a permanent identification mark. Stakes may be made of timber, steel, copper, etc. Generally these are pointed at one end to facilitate their anchoring into the ground. Depending upon the purpose it serves, it is termed as guard, grade, or line stake.
Post: In the setting out works, post is used to refer to any circular or square pole, generally wooden, which is used for various purposes, e.g. acting as a peg to support horizontal members like sight rails.
Batter-board: This is also known as a slope rail. In setting out works of large magnitudes, where absolute accuracy is required, batter-boards are used in conjunction with the wooden stakes or pins. A batter-board is generally a flat, square, wooden board, which is forced on top of a pin anchored in ground. Nails are driven in this board to indicate the direction of various lines that may give the
boundary of a building, mark of an excavation, etc. Strings or wires can be stretched between two batter-boards using the nails driven in them.
Batter-boards and wires over wooden stakes as shown in Fig. 25.

Fig. 25 Batter-Boards and Wires Over Wooden Stakes
Batter board for a pipeline as shown in Fig. 26.

Fig. 26 (a) Batter-board for a Pipeline

Fig. 26 (b) Use of Batter-Board
Crosshead: A crosshead consists of two vertical posts 1-1.5 m high, firmly embedded in ground, on each side of the trench with a horizontal rail nailed to these posts across the trench.

Sight Rails: The horizontal member of the crosshead, i.e. the timber beam nailed to the posts is referred to as a sight rail. A sight rail is in itself a kind of batterboard. The upper edge of the crosspiece is set to a convenient height above the ground so that a surveyor may align his eye with the upper edge. A single sight rail is used for road works, footings, etc., whereas two sight rails at right angles are used for building corners. For trenches and large diameter pipes, sight rail is used. Sight rail shown in Fig. 27 is used for highly undulating and steep grounds.

(d)

Fig. 27 Sight Rails

Boning Rod: It is a T-shaped wooden rod as shown in Fig.28. The top piece is generally $10 \mathrm{~cm} \times 40 \mathrm{~cm}$ and is 3 cm thick. This is nailed to an upright pole. It is generally used in the layout of trenches for sewers, pipe lines, etc. The length of a boning rod for each trench section is kept the same.

Fig. 28 (a) Boning Rod

Fig. 28 (b) Use of Boning Rod
Travelling Rod: A traveling rod (Fig.29) is a special type of boning rod in which the horizontal piece, called traveler, can be moved along a graduated vertical staff and can be conveniently clamped at any desired height.

Fig. 29 Travelling Rod

Precautions

1) Hold the tape such that it is in horizontal plane.
2) Hold the cross staff over the point in perfectly vertical position.
3) Use wooden or MS pegs for marking the points.
4) Place the batter board \& sight-rails in horizontal position using the spirit level.

EXERCISE 6

SETTING OUT OF STRUCTURES

Aim:

To set out work for a given plan of a building.

Equipment:

Cross-Staff, Spirit Level, 30m Tape, 5m Pocket Tape, Pegs, Wooden Stakes And Threads/Wire/Rope.

Principle:

Setting out of a building involves the transfer of the architect's plan from paper onto the actual site. The object of setting out a building is to provide the builder with clearly defined outlines for excavations. Two methods are generally used for setting out a building.

Procedure:

A. By using a circumscribing rectangle

Since stakes cannot be set at the exact corner points of a building (if set so, these will be lost during excavations), these are fixed at the corners of a bigger rectangle circumscribing the actual chosen, but a distance of usually 2.4 m is considered to be ideal. The actual procedure consists of the following steps:
(a) Preparation of the foundation trench plan showing the width of the foundations for various walls.
(b) Temporary pegs are driven at the actual corner points of the building.
(c) Then using these pegs as reference, a parallel line, say $A B$ as shown in Fig. 30 of required length is set out at an arbitrarily selected distance (say 2 m) from the actual center line.
(d) A chord is stretched between the pegs A and B. At A, a line is set out perpendicular to $A B$ (with a tape using 3, 4, 5 method). On this line, the position D is marked by setting a peg.
(e) Step (d) is repeated at point B so as to obtain point C.
(f) Having now set out the reference rectangle ABCD, the actual corners can be marked using the sides of the reference rectangle $A B C D$.
(g) Once all the points are staked, a chord is passed around the periphery of the rectangle and the actual excavation lines are marked using lime.

Fig. 30 Setting-out Structures by Using a Circumscribing Rectangle

Checks:

(i) In steps (d) and (e), after marking points D and C, respectively, the diagonals BD and AC should be measured. These lengths should correspond to the distances on the plan.
(ii) After setting out the point C, the length CD should be measured and should be exactly same as that of $A B$.
B. By making use of the rectangle formed by centerlines of the outer walls of a building
In this method the rectangle formed by the centerlines of the outer walls of the building is used. The steps involved are:
(a) The temporary stakes are fixed at the points that represent the corners of the center line rectangle. The procedure is similar to the one used in the first method while plotting the circumscribed rectangle.
(b) Since these pegs are not permanent and will be lost during excavation, the sides of the rectangle are produced on both the sides and permanent stakes are fixed on each of the prolongations, at a fixed distance, say 2 m , as shown in Fig. 31.
(c) By using these stakes, the position of any point can be obtained by plotting its coordinates using the reference stakes.

Fig. 31 Setting-out by Using Rectangle Formed by Centerlines of the Outer Walls of a Building

TOTAL STATION

TOTAL STATION

INTRODUCTION

Total Station is three-dimensional surveying technology unit. Total station combines the follow three basic components into one integral unit (Fig.32).

- an electronic distance measurement instrument
- an electronic digital Theodolite
- a computer or microprocessor

Total station can automatically measure horizontal and vertical angles as well as slope distances from a single setup. From these data it can instantaneously compute:

- horizontal and vertical distance components
- elevations
- coordinates
and display the results on an LCD.
Total station can also store data either on board in internal memory or in external data collectors. Data can be uploaded and can be downloaded to a computer. It can also perform basic co-ordinate geometry functions like area and perimeter calculations.

Distance Measurement: When a distance is measured with a total station a electromagnetic pulse is used for measurement - this is propagated through the atmosphere from instrument to a prismatic reflector or target and back during measurement. Distances are obtained by measuring the time taken for a laser radiation to travel from the instrument to a prism (or target) and back. The pulses are derived from an infrared or visible laser diode and they are transmitted through the telescope towards the remote end of the distance being measured, where they are reflected from a reflector and return to the instrument. Since the velocity v of the pulses can be accurately determined, the distance D can be obtained using $2 \mathrm{D}=\mathrm{vt}$, where t is the time taken for a single pulse to travel from instrument-target-instrument. This is also known as the timed-pulse or time of flight measurement technique, in which the transit time t is measured using electronic signal processing technique.

When measuring distances to a reflector telescope uses a wide visible red laser beam, which emerges coaxially from the telescope's objective.

When reflector less measurements are made telescope uses a narrow visible red laser beam which emerges coaxially from the telescope's objective

Fig. 32 Total Station

PRECAUTIONS

Total stations are very expensive and can be damaged by forcing or dropping the equipment. Please be extremely careful with this expensive equipment and make sure it does not get wet.

1. Never Place the Total Station directly on the ground.
2. Do not aim the telescope at the sun.
3. Protect the Total Station with an umbrella.
4. Never carry the Total Station on the tripod to another site
5. Handle the Total Station with care. Avoid heavy shocks or vibration.
6. When the operator leaves the Total Station, the vinyl cover should be placed on the instrument.
7. Always switch the power off before removing the standard battery.
8. Remove the standard battery from the Total Station before putting it in the case.
9. When the Total Station is placed in the carrying case, follow the layout plan.

Important parts

1) Oplical sight
2) Inlegraled yuide light EGL (oplicikal)
3) Verlical drive
4) Rattry
5) Rattry stand for GFBT11
(6) Rattery cover
6) Eyeprece, tocussing graticule
7) Focussing telescope image
8) Delaci able cariving handle with mounling sclews
9) Scria intefacc RS232
10) Foo: screw
11) Objective with intrggrated Flectronic Mistanes Mcasurement (FRM) Ricam exit
12) Lisp ay
13) Keyooard
14) Circular level
15) Or'Oll key
16) Trigger key
17) Herizontal drive

Technical terms and abbreviations

[^0]
Power Supply

Use the Leica Geosystems batteries, chargers and accessories or accessories reconmended by Leica Geosystems to ensure the correct functionality of the iristrument.
Puwe for the instrument can be supplied eilher internally or externally. An externa battery is couriected to the instrument usiny a LEMO cable.

- Internal battery:

One Cal 13111 or 121 battery tit in the natiery compartment.

- External battery

One GEB171 batery connected via cable.

1 GEB121
2 OLB111
3 Sinule cells in the batlery adapler GAD39
Your Leca Gcosystems instrument is powercd by rect aryeable plug-in balleries. For this product, we recommend the basic battery (GEE111) or the Pro battery (GEB 121). Optionally six single celis can be used with the GAD39 battery adapter.
Six single cell hatteries (1.5 V earh) supply 8 Volts The voltereter on the instrument is designed for a vollage of 6 Volls (GEB111/ GEB121)
© Ihe battey dharge is not nisplayed carreatly when using single cells. Use the single cells with the hattery arlapter as emergency power supply The. advantage of the single cells is in a lower rate of disc tarye even over lony perious

Operating the Instrument

I he On/ Ot key is located on the side cover of the TFSA0?
\square° Al st own displays are exar pleps. It is possible that local software versions are dfferent to the basic version.
Keypad

1) I ocus

Actively mensured field
2) Symito:s
3) Fixed kevs

Kcys with firmly assignod functions.
4) Navigation keys

Control of input har in edit and input mode ar control of focus bar.
5) Function keys

Are assigned the vanable tunctions displayed at the buthon of the stieen.
6) Softkey bar

Displays functions that can be cal ed up with the tunction kcys.

Fixed keys

[PAGE] Scrols to next page when a dia ogue consists of several pages.
[MENU] Accesses progrants, selings, the dald manager adjustments, communica tions paramcters, system intormation and data transfer
[USL[2] Key, programmable with function from the FNC menu.
[I-NU] Quick-access to moasurementsupporting functions
[ESC] Quit a dialog or the coit mode with activation of the "previous" val ue. Return to nex: higher level:
4 Confirm an input continue to the next field.

Trigger key

The measurement trigger has three settings (Al I , DIST, OFF).
The key ran be activated in the canfiguration menu

Solaction of Lanyuage

After switching on the instrument the user is able to choose his preferred language.
The dialog to choose the language is only shown if two languages are loaded onto the instrumert and Lang.choice: On is sct in Sctings dialog.
To oad an aduitional language connect the instrut ment to LGO Iocls Version 4.0 or higher via the serial interface and oad using 'I GO Tools - So'tware Upload".

Distance measurement

A aser distancer (FDM) is incoporated into the. instruments of the TPS400 series.
In al versons, the distance can be determined by using a laser beam which emerges coaxially from the telescope objectivc.
(8) Measurements to strongly reflecting targets such as to traffic lights in Reflector EDM mode without prism should be avoided. The measured distances may be wrong or inaceurate.
For applications without reflector, a special arrange ment of the LDN, and approprate arrangement of the beam paths, enable ranges of over five kilometres to be attained with stancard prisme Minipisms, 360^{n} reflectors and eflector tapes car also be used, and measurement is also possible without a reticctor.
(1) When a distance measurement is triggered, the EDM measures to the object which is in the beam path at that moment.

If e.g. people cars, a inimals, swaying branches, etc. cross the lase beam while a measurement is being taken, a raction of the laser beam is reflected and may lead to incorrect cistance values.
Avoid interrupting the measuring bcam while taking refectuless measuremenls or measurements usi xy ref ective foils. Measurements to prism reflectors are only critical it an object crosses the measuring bcam at a distance of 0 to 301 m and the distance. to be: measured is more than 300 m .
In practice, because the measuring time is very short, the user can aways find a way of avoiding these critica situations.
Vo Very shont cistances may be measured iefecturless in \mathbb{R} inkude to well ieflecting langels. Note that the distances are corrected with the additive ronstan: defined for the active reflector

Incorreat result

Correct result

Reflectoriess

Re sure that the lase beam is not reflecter by anything cluse to the line of sight le.g. highly retective objects).
\mathcal{R}^{-}When a dstance meass rement is triggered, the EDM measures to the object which is in the ocam path at that moment. In casc of temporary obstruction (e.g a passing vehicle, heavy rain, fog or snow) the EDM may measure to the obstruction.
When measuring longer distances, any divergence of the red laser beam from the line of sight might lead to less accurate measurements. Its is because the laser beam might not be refected from the point al wh ith the crusst airs are pointing.
Therefore, it is recommended to verify that the Rasee is well collimated will the telescupe line of sight (refer to the chapter "Cnecking and adjusting"). Do not measure vith twa instruments to the same tange. simulaneously.

Softkeys

Under sottkeys, a selection of commands and turctions is listed al the bullum or the sceeer. They call be activated with the cormesponding function keys. The availatle scope of edet, function deperds on the apolications / functions currently active.

General softkeys:

[LLL] Starts distance and ancle measure ments and saves measured values
[1) ISi] Sitarls distance and angle measurements whuul saviny lieasured values.
Saves displayed values.
[REC]
[FNTFR] Deletes rument value in the displey and is ready for the input of a new value.
[ENH] Opens the coordinate inpu: mode.
[LIST] Displays the lis. of available prints. [FIND] Slarls the searct for the point enilered. [EDM] Displays EDM settings.
【IL/N less measuretment modes.
[PREM Back to last active dialog.
[NEXT] Continue to nex. dialoy.

- Returns to highest softkey level

1 Io next sonttkey level
[OK. Sct displayed message or dialog and quil dialug.
(50) Find further information about menu/appi caton specitic: butons in the relevant sections

Symbols

Depending on scttware version ditterent symbols are displayed indicating a particular operating status.

Status symbol "EDM type"
[A Reficcior EDM mode for measuring to prisms and reflective targets.
Bi. Reflectorless EDM for measuring to all targets.

Status symbol "Battery capacity"

The batlery symbol indicales the level of the remaining battery capaciy $i 75 \%$ full shown in the exemple)
Status symbol "Compensator"
\longrightarrow Eimpensator is on
Cimpensator is ott

Status symbol "Offset"

$!\quad$ ()tset is active.

Menu tree
[MENU]> (Fi - Confirm menu selection.【AGE」 Scroll to next page.
(Depending on user interface sequence and arrangement of menu items may be different.
Maral

Programs
Scting cu
Tree Siation
Heterence line
teterence line
Tip Victancs
Areas Volume
Fentive H =igl!
Fienvide H ijg
Construction
Construc
Fuley settings
II
Contrast. Triggar Kay IISFR kay V-Satting.
Tilt Correoion
Sejlur Beep, Beep, H < likientilicijr,
Hevice ilumin, $151+$ Heater
Da:a Ouput G'Si 9/16, Mask $1 / 2 / 3$
Hz Colinctior, Auto Of, Langazge
Nin. Readny, Angle Urit, Distanse Unit, Distance Decinals iemperature. -ressure

Friam Typa
Frizm Corctant
Gude Lijit

Measuring Preparation / Setting up

Unpacking
Remove IHS400 trom transport case and check tor compleleriess.

1) Jata cable (optional)
2) Zenith eyepiece on Eyaprece for sleep angles (optional)
3) Total station
4) Removable tribrach (optional)
5) Tattery charger and accessories (optinnel)
6) Adjusiment two's
f) tattery Cil 13111 (optional)
7) G4D105 Mini pistr) adapler (uptorial)
8) Battcry GEB121 (optional)
9) Tip for m ini prism (opliunal)
10) Spacing bracket GHT 196 for heigh: meter (oprional)
11) Height meter GHMM007 (optional)
12) Trotective anver / I ens hood
13) Mini pris n rods
14) Mini prism + halder (optional)
15) User Manual
16) Counterweight for Zenith cycpicce (optiona)

Inserting / Replacing Battery

1. Rerrove ballery holder.

2. Remuve ballery.

3. Insert battery into battery holder.

4. Inserl ballery frolder nio the instament.

5\% Inscrt battery corrcctly (note poic markings on the inside of the batiery holder). Check and insert battery holcer true to side into the housing.

- Tn charge the hattery refer to chapter "Charging the tralleries".
- For the type of battery refer to chapter "Technical deta".

When using the GEB121 oattery, remove the space for de GEB111 frum the ballery comparment.

E Charging / first-time use

- I he battery must be charged prior to using tor the first time becausc it is delivered with an energy content as low as possible
- For new batteries or bateries that have been storen for a long time (s three months) it is effectual to make 3-5 charge/distharge rycles
- The permissible temperature range for charging is belween $0^{\circ} \mathrm{C}$ to $-35^{\circ} \mathrm{C} /+32^{\circ} \mathrm{F}$ to $+95^{\circ} \mathrm{F}$. For optinal charging we recommend charging the batteres at a low ambient temperature of $111^{\circ} 0$ to $+20^{\circ} \mathrm{C} l^{\prime}+50^{\circ} \mathrm{F} 10+68^{\circ} \mathrm{F}$ if possiblc.
- It is nomial for the ballery to become wam during charging. Using the ctargers teworlmended by Leica Ceosystems, it is not possible to charge the battery if the temperature is too high.

Operation/Discharging

The batteries can be operated from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} / 4^{\circ} \mathrm{F}$ lo $+131^{\wedge} \mathrm{F}$.
Low operating temperatures reduce the capacity that can be drawn very high operating temp=ratures roducc the service ife of the battery.

Setting up the tripod

1 I cosen the rlamping screws on the tripod legs, pull out to the required length and tighten the clamps
2. In ode lo guadentee a firn fouthold sufficiently press the tnpod legs into the ground. When pressing the lejs inio lie ground nole that the force must ce appled along the legs.

5 When setting up the fripod pay attentinnto a hrizonital positon of the hipod pale.
Slight corrections of indination can be made with the foat screws of the trihrach I amger rorrections must be done with the trpod legs.
\square
When using a tribrach with an optical plummet, the laser plummet cannot be used.

Careful handling of tripod

- Chodr al scrows and bolts for correct fit.
- Cuting trar spurt always use die cover supplied.
- Use the inpod only tor surveying tasks

Instrument Setup

Description

This topic describes an instrument setup over a marked ground point using the laser plummet. It is diways possibe lu set up the ins.aument withoul the need for a marked ground point.
(ब)
Impoilant features

- It is always recommended to sheid the instrument from direct sunlight and avoid unieveri leniperalures around the instrument
- The laser plummet described in this topic is built into the vertical axis of the instrument. It properts a red spot onto the ground. making it appreciably easier to centre the instrument
- The laser plummet cannot be used in conjunction with a triorach equipped with an optical plummet.

Setup step-by-step

1. Extend the tripod leys to alluw for a comiutable working posture. Hosition the tripod over the marked ground point, centring it as woll as possiblc.
2. Fasten the tribrach and instrument onto the Lipod
3. Tum on the instrument and swict on the laser purmmel and electunic level by pressing [FNC] $>$ [Level/Plummet].
4 Move the tripnd legs (1) and use the triorach fantscrews (6) to centre the plimmet (4) over the ground pont.
4. Adjust the tripud leys to level the ciicular level (7).

6 By using the elestronic level turn the fribrach fontscrews (6) to precisely level the instrument \int_{8}^{8} Refer to "Levelling up with the electronic level slep-by-slep" or more infumation.
7. Cencre the instrument precisely over the ground point (J) by shifing the tribrach on the tripod plate (2).
(3) 12epeat steps 6 and $/$ untll the requied acruracy is achicved

Levelling up with the electronic level step-by-step

The electronic evel can be used to precisely level up the instrument using the foosscrews of the triorach.

1. Turn on the instrument and switch on the clectronic level by pressing [FNC] > [-evel/ Pluminel.
2. Centue the circulan level appoximately by turning the tootscrews of the :ribrach
(E) The bubble of the electronic level and the arrows for the rotating direction of the footscrews only appear if the instrument tit is inside a cerlain levelivg range
3. Tum the instrument unt it is parallel to two foolscrews.
4. Centue the elevtronic level of this axis hy turning the two fontscrews Arrows show the direclion for

10.atiry the foulscrews. When the elechunic level is centuec the anows ale rep aced by checkmarks.
5. Censutherectrowic leve for the second axis by turning the last fontscrew an arrow shows the direction for rotating the footscrew. When the electronic level is centred the arrow is replaced by a checkmark.

CF When lie eectronic level is centred and three cherkmarks are shown, the instrument has been
 perfectly leveled us.
6. Accepl wilh $\lceil O K]$.

Laser intensity

Changing the laser Intensity

Externa influences and the surface conditions may require the adjustment of the intensity of the laser. The laser can be adjusted in 25% steps as required.

Hints for positioning

Positioning over pipes or depressions
Under some circumstances the laser spot is not visibe (e.g. over pipes). In this case, the laser spot can be made visible by using a transparent plate so that the laser spot can be easily aligned to the centre of the ppe.

Input mode－method 1

In entry mode，enter text or rumeric values．

［INPUT］1．Delete entry，display numeric／alpha nalneric soflkey ban．The cursor indi cates that the instrument is ready for irput．
41） 23 Selection of range of characters＇ mage of numocrs
「シッ｜
Additional characters；numbers．
（E1）（E2）3．Select the decired character．Char acter shifts to the left．

［ESC］

4．Contrmentry．
Deletes input and restores previous value．

Input mode－method 2

In entry mode，enter text or numeric values

［INFUT］1．The ful rame of available charac ters are displayed on the screen．
（43）－（73）＇tielection it range of characters．＇ range of numbers
Proceed with steps 3 and 4 from method 1 ．
5 The Ifethod you like to use can be sel in lle sellings．

Edit mode

Existing characters are changed in the edit mode．

1 Sitart edit mode．Vertical entr bar is masitioned flush right
8
I dit har is pmesitionen flush le：tt
（51）－ $\mathbf{6 3}$ 2．Select range of characters／range of rumbers
$[\geqslant \gg$ Anditional characters／numbers
IB－［in 3．Overwrite existing characters．
4
［ESC］

4．Confirm input．
Deletes change and restorcs plevious value．

Erasing characters

1．Place cursor on character to be
deleted．
2．Pressing the navgation key celetes
the relevant character
3 Contrm inp it
Deleles the ctrange and restures the
Frevious vaiue．

Inserting characters

If a character was skipped (e.g. -15 instead of -125)
you can insert it later.

A. 2. Inserts an empty character on the right of " 1 ".
(F1 - F3 3. Select range of characters/range of numbers.
(Fi) - 4. Select relevant character.

5. Confirm input.

Numerical and Alphanumerical input
Input is made with the soffkey bar and the assigned function kcys.
Fosition the marker in the relevant field.
[INPUT] 1. Calls up the input dialoguc.
(E1 (F) Sielent range it characters/range of rumbers.
[\ggg] Additional characters / numbers.
1 3. Confirm nout.
Selection is limited to valid digits for entres, that duc to their display characteristics, fall into a cellain ranye (e.q. ancules in deyrees).

Numerical input

Alphanumerical input

Pointsearch

1 'ountsearch is a global tunction used tyy applications to e.g. find internally saved measured or fixed puinis.
It is possible for the user to limit the point search to a particular job or to seach the whole storage.
The sea ch plocedure always finds fixed points betore m=asured points that tultill the same search criteria. If scveral points moct the search critena,
then the po its are isted according to their age. The instrument finds the most current (youngest) fixed point tirst

Direct search

By entering an actual point number (e.g. "P 13") all points vith the comesponding point number are tound.

[VIEW]
[Ni !
[OK]
(JCH]

Displays the coordinates and the job of the se cected point.
or manual infuit nt coorcinates
Contirm selected point
Io select a difterent job.

Wildcard search

The Wildcard search is indicated by a ${ }^{* n *}$. The asterisk is a place holderfor any following sequence of characters.
Wildualds ale always used if tie point number is not fully known, or if a batch of points is to he searche.d for.

4) Starts point search.

Examples:
All points of ary length are found.
A All points with exactly the point number " A " are found.
\wedge^{*} Nl points of any length starting with " \wedge " are

${ }^{\mathrm{x}} 1$ All points of any length with a "1" as the sccond chalaciel ale found (e.g. A1, B12, A1C).
$\mathrm{A}^{*} 1$ All poinls of dily leng h with an " A " as the fiss. character and a " 1 " as the third character are found. (e.g.: AB1, AA100, AS15).

Measuring

After svitching on and setting up correcty, the tota station is immediately ready for measuring In the measurement display it is possible to call up lixed keys and funcion keys, as well as big̣er keys and therf tunctions
(5) Nl shown displays are examples. It is poss ble that locel sofiware versions are dfferent to the basic version.

Example of a possible measuring display:

FNC Key

Unver [FNC] several runctions can be celled up. Thei applicetions ase described below.
(ब्大) 1 unctions can also he starter directily from the different appications.
(8) Each function from the FNC menu can be assigned to the [USER]-key (sce chapter "Settings").

Light On /Off

Switches display light on / off

Level/Plummet

This function enables the electronic bubble and the range of intensity settings of the laser plummet.

IR/ RL Toggle

Change between the two EDM yocs IR ion Reflectors) and RL (Reflectorless). New setting is displayed tor about nne secrind

IR. Disla ce measurements vith pisms.
RL. Dista ce measurments vilhoul prisms.
Find more information in chapt=r "EDM Setings".

Laser Pointer

Switches on or off the visible laser beam for illuminating the target point. The new settings are d splaved for acoul one second and then saved.

Free-Coding

Starts "Coding" to select a code from a codelist or enter a ncw codc. Some functionality like soffikey button [CODE]

Units

Displays the cuneni distance and a gle uniil and gives the possibility to change these

BASIC STEPS INVOLVED IN SETTING UP A TOTAL STATION

1. SETTING UP TOTAL STATION OVER A POINT FOR THE FIRST TIME (Aligning to North)
2. Switch on the instrument.
3. Press USER key for Laser Beam for centering and leveling.
4. Press MENU.
5. Press F1 (PROGRAMS).

6. Press F1 (SURVEYING).

SURVEYING		
[*] F 1	Sel Jub	(1)
[*] F?	Spt Statinn	(2)
[] F 3	Set orientation	(3)
F4	Start	(4)
F1	F2 F3	F4
(F1)	(F2) F3	F4)

6. Press F1 (Set Job).

7. Press F1 (NEW) to give a new job name.
8. To write the name of the job. Press F1 (INPUT) and then using the Function keys F1 to F4 give the name. Then Press Enter.
9. Press F4 (OK)
10. Press F2 (Set Station) to give the station No. Press F1 (INPUT) to give the station number using the Function keys from F1 to F4.
11. Press F2 (FIND).
12. Press F4 (ENH).
13. Enter the Easting, Northing and Elevation for the point and Press F4 (OK)
14. Now in front of hi (Instrument Height) give the height of the instrument.
15. Press F4 (OK)
16. Press F3 (Set Orientation).

17. Press F1 (Manual Angle Setting).
18. Point the instrument in the North direction and Press $F 1(\mathrm{Hz=})$.
19. Press F3 (REC).
20. Press F4 (START).

21. In front of the (Pt ID) Point ID give the number of the point to shoot.

22. In front of the hr (Reflector height) give the height to which the reflector is opened.

2. FOR SHIFTING THE STATION BY ALIGNING TO THE BACK POINT (Known Co-ordinates)

1. Switch on the instrument.
2. Press USER key for Laser Beam for centering and leveling.
3. Press MENU.
4. Press F1 (PROGRAMS).
5. Press F1 (SURVEYING).
6. Press F2 (Set Station) to give the station No.

7 In front of Station: Enter the Station Number where you are standing. Press F1 (INPUT) to give the station number using the Function keys from F1 to F4. Press F2 (FIND).
8. Press F4 (OK).
9. Now Give in front of hi (height of Instrument) and Press F4 (OK).
10. Press F3 (Set Orientation).
11. Press F2 (Coordinates).
12. In front of BS (Back Sight) give the number of the Back Point to which the Instrument is being aligned. By Pressing F1 (INPUT)
13. Press F2 (FIND)
14. Press F4 (OK).
15. Press PAGE.
16. Now Sight the back point and Press F1 (DIST).

17 The value in front of $\Delta=$ will give the relative error in station shifting.
18. Press F3 (REC).
19. Now Press F (OK).
20. Press F4 (START)
20. And we can continue with the surveying.
21. To see the Easting, Northing, and Elevation for a Point Press PAGE until you see East, North, Elevation.

EXERCISE 7

DETERMINATION OF AREA USING TOTAL STATION

Aim:

To determine area of a piece of land using Total Station.

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Arrows
5. Field Book

Procedure:

1) Using arrows mark the corners of the land whose area is to be found.
2) Choose a point for the Total station set up such that from this point all the points marked in step 1 are visible and set up the station on this point.
3) Press MENU.
4) Press F1 (Programs).
5) Press PAGE.

6) Press F2 (Area).

7) The First three steps (F1, F2 and F3) for station setup and orientation (refer to Step1 and Step 2).
8) Press F4 (Start).

The points whose area is to be found can be either in the memory or can be shot directly in the field.
9) In front of Point ID Enter the number of the first point, then sight the point by keeping the reflector on that point. Press F1 (ALL) or press the trigger.
10) Repeat step 9 for the remaining points in a proper sequence until you have shot all the points. Once you have shot all the point you can see the area displayed on the screen automatically.

Result:

The area of the given piece of land is, $\mathrm{A}=$

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In cadastral surveys it is required to make a plan of land showing all its boundaries and also obtain its area. This information about the land is useful for land development and selling and purchase of land.

EXERCISE 8

TRAVERSING USING TOTAL STATION

Aim:

To do a closed traversing for at least five points using Total Station.

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Arrows
5. Field Book

Procedure:

1. Identify the points on the ground for traversing and mark them arrows.
2. Choose a control point for using it as first station point such that at least one control point for back-sight is visible
3. Set up the instrument on the point chosen in step 2.
4. Press MENU
5. Press F1 (Programs)
6. Press F1 (Survey).
7. For Setting up the job as you know the coordinates of two control points on the paper follow the following steps.
8. Press F1 (Set Job).
9. Press F1 (New).
10. Enter the New Job Name by pressing F1 (Input).
11. Give the name of the job by using the Function key F1 to F4.
12. Press F4 (OK).
13. Press F2 (Set Station).
14. In front of the station give the number of the station by giving the number of the station where you are standing.
15. Press F2 (FIND).
16. Press F4 (ENH).
17. Enter the Easting, Northing and Elevation of the point where you are standing.
18. Press F4 (OK).
19. In front of hi (height of the Instrument) Enter the Instrument height by measuring it.
20. Press F3 (Set Orientation).
21. Press F2 (Coordinates).
22. In front of BS (Back Sight) Enter the number of the back sight point to which you are aligning.
23. Press F4 (ENH).
24. Press F4 (OK).
25. Press PAGE.
26. Press F4 until you have DIST In front of F1.
27. The value in front of gives the relative error in the station shifting.
28. Press F2 (REC).
29. Press F4 (NO).
30. Press F4 (Start).

31. Take foresight on first traverse point enter point ID and record its coordinates. (This point will be the next instrument station)
32. Shift the instrument to first traverse point and follow the standard procedure to obtain the coordinates of second traverse point.
33. Continue until you finish all traverse points.
34. Check whether there is any closing error. If it is there apply corrections to the coordinate and plot the traverse.
(If you are using advanced instruments closing error will be shown automatically in traverse report and traverse can be adjusted on board)

Result:

Record the coordinates obtained for each point in your field book. If there is a closing error apply correction to all the coordinates. Plot the survey on a drawing sheet using the corrected coordinates.

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In control surveys and topographical surveys it is required to do traversing. In control surveys, using the existing control points it is required to establish new control points. In topographical surveys using the existing control points and also by establishing new control points it is required obtain the coordinates of various details like buildings, roads and other features.

EXERCISE 9

CONTOURING USING TOTAL STATION

Aim:

To prepare Contour map of an area using Total Station

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Arrows
5. Field Book

Procedure:

1. Obtain the coordinates of all the grid points and record them in your field book
2. Choose a control point from where all the grid points and at least one control point for back-sight are visible.
3. Set up the instrument on the point chosen in step 2.
4. Press MENU
5. Press F1 (Programs)
6. Press F2 (Stake Out).
7. For Setting up the job as you know the coordinates of two control points on the paper follow the following steps.
8. Press F1 (Set Job).
9. Press F1 (New).
10. Enter the New Job Name by pressing F1 (Input).
11. Give the name of the job by using the Function key F1 to F4.
12. Press F4 (OK).
13. Press F2 (Set Station).
14. In front of the station give the number of the station by giving the number of the station where you are standing.
15. Press F2 (FIND).
16. Press F4 (ENH).
17. Enter the Easting, Northing and Elevation of the point where you are standing.
18. Press F4 (OK).
19. In front of hi (height of the Instrument) Enter the Instrument height by measuring it.
20. Press F3 (Set Orientation).
21. Press F2 (Coordinates).
22. In front of BS (Back Sight) Enter the number of the back sight point to which you are aligning.
23. Press F4 (ENH).
24. Press F4 (OK).
25. Press PAGE.
26. Press F4 until you have DIST In front of F1.
27. The value in front of gives the relative error in the station shifting.
28. Press F2 (REC).
29. Press F4 (NO).
30. Press F4 (Start).
31. Press F4 until you have MANUAL in front of F3.
32. Enter East, North and Height for the point to be staked.

33. Now Move the Instrument until Hz equal to zero.
34. Now move the prism in this line of sight to the distance given in front of $\Delta \leqslant \quad: \quad--\quad 0.000 \mathrm{~m}$ from the instrument station.
35. Now with moving the instrument horizontally with moving the telescope up and down only tell the prism man to come in line of sight of that point. Again Press F2 (DIST) do this until the value comes near to the limiting factor and you have the point. Then press All or trigger button to record the point.
36. For the next point again Press F4 until you have manual in front of F3 and again enter the coordinates of the next point to be staked repeat this process for all the points.
37. You can view x, y, z coordinates all the points in file management.

Result:

Record the coordinates of all the points surveyed in your field book and using this data create a contour map of the area surveyed.

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In topographical surveys, it is required to obtain contour maps/ plans of an area. Contour maps are useful in planning and construction of pipeline works, road works and residential colonies etc.

EXERCISE 10

DETERMINATION OF REMOTE HEIGHT USING TOTAL STATION

Aim:

To determine remote height of a point using Total Station.

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Arrows
5. Field Book

Procedure:

The Remote height program is used to find the elevation of the remote points where it is possible to place the prism directly below the point the point whose remote elevation is to be found.

1. Identify the point whose elevation has to found out
2. Choose a point for the Total station set up such that from this point both the point under consideration and its projection on the ground are visible, then set up the station over this point.
3. Press MENU.
4. Press F1 (Programs).
5. Press PAGE button.

6. Press F3 (Remote Height).
7. The First three steps (F1, F2 and F3) for station setup and orientation (refer to Step1 and Step 2).
8. Press F4 (Start).

9. Focus on the required point and turn telescope towards ground and guide the prism man for properly placing the prism on the ground.
10. Now put the prism on the base point and Sight it and press F3 (ALL).
11. Now move the telescope and focus the top point whose elevation is to be found.
12. The height value will be displayed on the screen.

Result:

The remote height of a point, $h=$

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In construction of structures like buildings and bridges etc., it is required to find height of some points which are difficult to access.

EXERCISE 11

SETTING OUT USING TOTAL STATION

Aim:

To set out column centres of a proposed building.

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Arrows
5. Field Book

Procedure:

1. Obtain the coordinates of all the column centers.
2. Choose a control point from where all column positions and at least one control point for back-sight are visible.
3. Set up the instrument on the point chosen in step 2.
4. Press MENU
5. Press F1 (Programs)
6. Press F2 (Stake Out).
7. For Setting up the job as you know the coordinates of two control points on the paper follow the following steps.
8. Press F1 (Set Job).
9. Press F1 (New).
10. Enter the New Job Name by pressing F1 (Input).
11. Give the name of the job by using the Function key F1 to F4.
12. Press F4 (OK).
13. Press F2 (Set Station).
14. In front of the station give the number of the station by giving the number of the station where you are standing.
15. Press F2 (FIND).
16. Press F4 (ENH).
17. Enter the Easting, Northing and Elevation of the point where you are standing.
18. Press F4 (OK).
19. In front of hi (height of the Instrument) Enter the Instrument height by measuring it.
20. Press F3 (Set Orientation).
21. Press F2 (Coordinates).
22. In front of BS (Back Sight) Enter the number of the back sight point to which you are aligning.
23. Press F4 (ENH).
24. Press F4 (OK).
25. Press PAGE.
26. Press F4 until you have DIST In front of F1.
27. The value in front of gives the relative error in the station shifting.
28. Press F2 (REC).
29. Press F4 (NO).
30. Press F4 (Start).
31. Press F4 until you have MANUAL in front of F3.
32. Enter East, North and Height for the point to be staked.

33. Now Move the Instrument until Hz equal to zero.
34. Now move the prism in this line of sight to the distance given in front of $\Delta \leqslant \quad: \quad 0.000 \mathrm{~m}$ from the instrument station.
35. Now with moving the instrument horizontally with moving the telescope up and down only tell the prism man to come in line of sight of that point. Again Press F2 (DIST) do this until the value comes near to the limiting factor and you have the point.
36. For the next point again Press F4 until you have manual in front of F3 and again enter the coordinates of the next point to be staked repeat this process for all the points.

Result:

Record the details of points set out in your field book.

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In setting out a building, a surveyor has to set out position of columns and other elements of the building in both horizontal and vertical planes.

EXERCISE 12

DISTANCE, GRADIENT AND DIFFERENCE OF HEIGHT BETWEEN TWO INACCESSIBLE POINTS USING TOTAL STATION.
Aim:
To obtain the distance, gradient and difference of height between two in accessible points using the Total Station.

Equipment:

1. Total Station
2. Tripod
3. Prism and Pole
4. Field Book

Procedure:

The Tie Distance Program is used to find the horizontal distance between two points by measurement in the field.

1. Identify the two points for measuring the distance.
2. Choose a point for the Total station set up such that from this point the two points marked in step 1 are visible and set up the station on this point.
3. Press MENU.
4. Press PAGE.

5. Press F1 (Tie Distance).
6. The First three steps (F1, F2 and F3) for station setup and orientation (refer to Step1 and Step 2).
7. Press F4 (Start).
8. There are two type of distance Polygonal and Radial.

9. The Polygonal is the point-to-point distance where as the Radial is used for finding the distance from a single point being kept fixed.
10. When the Points are not in memory and you want to operate the program by taking the measurements right in the field,

11. In front of the point enter the number of the point and Press F3 (ALL).
12. In front of the point2 Enter the number of the second point again sight it and press F3 (ALL).
13. Now you can see the results displayed on the screen.

Result:
The distance (d), gradient (s) and difference of height (h) between two in accessible points are, $d=\quad, \mathrm{s}=\quad, \mathrm{h}=$

Comments/Inference:

Write your comments and observations on the result obtained.

Applications:

In topographical surveys, some times features like buildings etc. are not accessible. Therefore a surveyor should be familiar with the technique of obtaining the horizontal distance, difference in height and hence the gradient between two inaccessible points.

[^0]: $Z A=$ Line of sight $/$ collimation axis
 I elescope axis = line from the retcle to the centre of the ohjective
 $\mathbf{S A}=\mathbf{S t a n d} \operatorname{ting} \operatorname{axls}$
 Verlical rotadon axis of the lelescope.
 $K A=$ Tilting axis
 Ilorizontal rotation axis of the telescope (Trunion axis).
 $V=$ Vertical angle $i z e n i t h$ angle
 $\mathrm{VK}=$ Vertical clrcle
 Will coded circular division for $\begin{aligned} & \text { eading ble } V \text { algle. }\end{aligned}$
 $\mathrm{Hz}=$ Horizontal direction
 HK = Horizontal circle
 With coded circular division tor reading the Hz angle.

